文献库 文献相关信息

题目:
Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis.
作者:
Kumar(U),Sasi(R),Suresh(S),Patel(A),Thangaraju(M),Metrakos(P),Patel(S C),Patel(Y C)
状态:
发布时间1999-02-10 , 更新时间 2011-11-17
期刊:
Diabetes
摘要:
We have developed a panel of rabbit polyclonal antipeptide antibodies against the five human somatostatin receptor subtypes (hSSTR1-5) and used them to analyze the pattern of expression of hSSTR1-5 in normal human islet cells by quantitative double-label confocal fluorescence immunocytochemistry. All five hSSTR subtypes were variably expressed in islets. The number of SSTR immunopositive cells showed a rank order of SSTR1 > SSTR5 > SSTR2 > SSTR3 > SSTR4. SSTR1 was strongly colocalized with insulin in all beta-cells. SSTR5 was also an abundant isotype, being colocalized in 87% of beta-cells. SSTR2 was found in 46% of beta-cells, whereas SSTR3 and SSTR4 were relatively poorly expressed. SSTR2 was strongly colocalized with glucagon in 89% of alpha-cells, whereas SSTR5 and SSTR1 colocalized with glucagon in 35 and 26% of alpha-cells, respectively. SSTR3 was detected in occasional alpha-cells, and SSTR4 was absent. SSTR5 was preferentially expressed in 75% of SST-positive cells and was the principal delta-cell SSTR subtype, whereas SSTR1-3 were colocalized in only a few delta-cells, and SSTR4 was absent. These studies reveal predominant expression of SSTR1, SSTR2, and SSTR5 in human islets. Beta-cells, alpha-cells, and delta-cells each express multiple SSTR isoforms, beta-cells being rich in SSTR1 and SSTR5, alpha-cells in SSTR2, and delta-cells in SSTR5. Although there is no absolute specificity of any SSTR for an islet cell type, SSTR1 is beta-cell selective, and SSTR2 is alpha-cell selective. SSTR5 is well expressed in beta-cells and delta-cells and moderately well expressed in alpha-cells, and thereby it lacks the islet cell selectivity displayed by SSTR1 and SSTR2. Subtype-selective SSTR expression in islet cells could be the basis for preferential insulin suppression by SSTR1-specific ligands and of glucagon inhibition by SSTR2-selective compounds.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。