文献库 文献相关信息

题目:
High intracellular chloride delays the activation of the volume-sensitive chloride conductance in mouse L-fibroblasts.
作者:
Doroshenko(P)
状态:
发布时间1999-03-22 , 更新时间 2014-06-17
期刊:
J Physiol
摘要:
1. The relationship between cell volume and volume-sensitive Cl- conductance during hyposmotic cell swelling of patched cells and the effects of intracellular chloride on the conductance have been studied in mouse L-fibroblasts. To this end, swelling-activated current and cell volume were measured simultaneously in cells dialysed with low-Cl- (16 mM) or high-Cl- (130 mM) solutions using the whole-cell patch-clamp technique and videomicroscopy. 2. The increase in cell volume of patched cells and the volume-sensitive conductance saturated during a 4-5 min exposure to mildly hyposmotic solutions (15-20 % less than isosmotic). The swelling of patched cells varied considerably and was greater than the swelling of intact cells. No correlation between the maximal values of the volume-sensitive conductance and the maximal volumes of swollen cells was evident for cells dialysed with the low-Cl- solutions. 3. The amplitude of the volume-sensitive conductance decreased with a reduction in either extracellular or intracellular Cl- concentration; the size of the maximal conductance was not modulated by intracellular Cl- ions. 4. The activation of the volume-sensitive conductance was slower in high-Cl- cells than in low-Cl- cells whether it was induced by hypotonic cell swelling or by cell inflation; in low-Cl- cells the conductance saturated before the cell volume had reached its maximal value. 5. It is concluded that in patched cells an increase in cell volume triggers activation of the volume-sensitive Cl- conductance but does not determine its amplitude and that the rate of activation of the conductance is affected by the intracellular Cl- concentration.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。