文献库 文献相关信息

题目:
Neuroblastoma cells can actively eliminate supernumerary MYCN gene copies by micronucleus formation--sign of tumour cell revertance?
作者:
Ambros(I M),Rumpler(S),Luegmayr(A),Hattinger(C M),Strehl(S),Kovar(H),Gadner(H),Ambros(P F)
状态:
发布时间1998-03-31 , 更新时间 2006-11-15
期刊:
Eur J Cancer
摘要:
Human neuroblastoma cell lines frequently exhibit MYCN amplification and many are characterised by the presence of morphologically distinct cell types. The neuronal cells (N-cells) and the so-called flat cells (F-cells) are thought to represent manifestations of different neural crest cell lineages and are considered to be the consequence of neuroblastoma cell pluripotency. In this study, various neuroblastoma cell lines were examined for micronuclei. In F-cells of neuroblastoma cell lines with extrachromosomally amplified MYCN, we observed the frequent occurrence of micronuclei. Using fluorescence in situ hybridisation (FISH) with a MYCN specific probe, we demonstrated that these micronuclei were packed with MYCN hybridisation signals. In addition, in a minor percentage of cells, MYCN signals occurred in clusters, adhered to the nuclear membrane and aggregated in nuclear protrusions. In F-cells, a substantial reduction or lack of amplified MYCN copies was observed. These observations let us conclude that extrachromosomally amplified genes can be actively eliminated from the nucleus resulting in a dramatic loss of amplified sequences in the F-cells. Moreover, reduction or loss of amplified sequences in F-cells was shown to be accompanied by downregulation of MYCN expression, by a decrease in proliferative activity and by upregulation of molecules of the major histocompatibility complex class I (MHC I). Interestingly, F-cells are not restricted to neuroblastoma cell cultures, but also occur in cell lines of other tissue origin. All F-cells share important biological features, interpreted as cell revertance, i.e. loss of the malignant phenotype and properties. This fact, together with the demonstration that neuroblastoma cells do not differentiate into Schwann cells in vivo [1] Ambros et al. NEJM 1996, 334, 1505-1511, do not support the hypothesis that F-cells represent Schwannian/glial differentiation in vitro. We therefore postulate that the elimination of amplified MYCN gene copies in cultivated neuroblastoma cells is in line with the phenomenon of tumour cell revertance.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。