文献库 文献相关信息

题目:
Angiotensin II-stimulated phospholipase C responses of two vascular smooth muscle-derived cell lines. Role of cyclic GMP.
作者:
Baines(R J),Brown(C),Ng(L L),Boarder(M R)
状态:
发布时间1996-12-06 , 更新时间 2016-07-26
期刊:
Hypertension
摘要:
Vascular smooth muscle cells of the spontaneously hypertensive rat (SHR) are known to show increased responsiveness to angiotensin II (Ang II) compared with cells of normotensive control Wistar-Kyoto rats (WKY). We investigated the hypothesis that differential levels of cGMP lead to the different responsiveness of the cells, using vascular smooth muscle cells in culture. cGMP levels in extracts of SHR-derived cells were lower than those of WKY-derived cells. This was true for both unstimulated cells and cells treated with equal concentrations of either sodium nitroprusside or S-nitroso-N-acetylpenicillamine. Stimulation of cells with Ang II did not affect levels of cGMP but increased levels of inositol 1, 4, 5-trisphosphate (IP3) and Ca2+, which were greater in SHR- than in WKY-derived cells. When SHR and WKY cells were preincubated with different concentrations of S-nitroso-N-acetylpenicillamine to generate similar cGMP levels in each cell type, the subsequent IP3 response to Ang II was the same in the two cell types. To reduce any influence of cGMP on responses, we permeabilized the cells with alpha-toxin. Stimulation of alpha-toxin-permeabilized the cells with high Ca2+ revealed an IP3 response in SHR- but not WKY-derived cells. Similarly, permeabilized SHR cells responded to Ang II but WKY cells did not. However, GTP and GTP gamma S elevated IP3 in both cell types. Taken together, these results indicate that the low response of WKY cells can be accounted for by the inhibitory influence of cGMP. However, when this inhibition is removed by permeabilization, further differences between the cells are revealed that will contribute to the elevated SHR response.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。