文献库 文献相关信息

题目:
Development of voltage-dependent currents in taste receptor cells.
作者:
Mackay-Sim(A),Delay(R J),Roper(S D),Kinnamon(S C)
状态:
发布时间1996-11-14 , 更新时间 2008-11-21
期刊:
J Comp Neurol
摘要:
Taste buds, the specialized end organs of gustation, comprise a renewing sensory epithelium. Undifferentiated basal cells become taste receptor cells by elongating and extending processes apically toward the taste pore. Mature taste cells are electrically excitable and express voltage-dependent Na+ Ca2+, and K+ currents, whereas basal stem cells exhibit only slowly activating K+ currents. The question we have addressed in the present study is whether contact with the taste pore is required for expression of voltage-dependent inward currents in Necturus taste cells. Mature taste cells were distinguished from developing cells by labeling the apical surface of the cells with fluorescein-isothiocyanate-conjugated wheat germ agglutinin (FITC-WGA), while the tissue was still intact. Elongate cells lacking FITC-WGA staining were interpreted as developing taste cells that had not yet reached the taste pore. Giga-seal whole-cell recording revealed that most developing taste cells lacked inward currents. Although some developing cells expressed inward currents, they were much smaller than those of mature cells, and the activation kinetics of the K+ currents were slower than in mature cells. Electron microscopy confirmed the identity of labeled and unlabeled cells. All FITC-WGA-labeled cells exhibited the ultrastructural characteristics of mature taste receptor cells, whereas most unlabeled taste cells had a characteristic morphology that was markedly different from mature taste receptor cells or basal stem cells. These data suggest that contact with the taste pore is required for the development of inward currents in taste cells.
语言:
eng
DOI:
10.1002/(SICI)1096-9861(19960205)365:2<278::AID-CNE6>3.0.CO;2-2

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。