文献库 文献相关信息

题目:
Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behavior revealed by time-lapse video microscopy.
作者:
Jones(J E),Corwin(J T)
状态:
发布时间1996-02-22 , 更新时间 2007-11-15
期刊:
J Neurosci
摘要:
The regeneration of sensory hair cells in lateral line neuromasts of axolotls was investigated via nearly continuous time-lapse microscopic observation after all preexisting hair cells were killed by a laser microbeam. The laser treatments left neuromasts with one resident cell type, which was supporting cells. Over the course of 1 week, replacement hair cells arose either directly via differentiation of cells present in the epithelium from the beginning of the time-lapse period or via the development of cells produced after one or two divisions of supporting cells. All of the cell divisions that produced hair cells were asymmetrical. During the first hour after the treatment, macrophages and smaller leukocytes were attracted to the laser-treated neuromasts. The smaller leukocytes returned to control levels 48-60 hr after the treatment, whereas macrophages remained active there throughout the period of hair cell replacement. Macrophage incidence peaked 36-48 hr after the laser treatment. Macrophages phagocytosed damaged hair cells and supporting cells, as well as new cells and preexisting cells without recognizable damage. The results provide direct evidence of hair cells arising as progeny produced from the divisions of supporting cells, evidence of hair cells and supporting cells arising from the same cell division, evidence relating to the timing of hair cell differentiation, and indirect evidence pertaining to proposals that hair cells sometimes arise via conversion of cells without an intervening division. The results also suggest that macrophages may influence early stages in the process of hair cell regeneration.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。