文献库 文献相关信息

题目:
Phenotypic change and altered protein expression in X-ray and methylcholanthrene-transformed C3H10T1/2 fibroblasts.
作者:
He(C),Merrick(B A),Witcher(L L),Patterson(R M),Daluge(D R),Selkirk(J K)
状态:
发布时间1994-10-26 , 更新时间 2003-11-14
期刊:
Electrophoresis
摘要:
The morphology, growth properties and cellular protein patterns from parent and two transformed C3H10T1/2 cell lines were analyzed to associate the phenotypic and protein differences with cell transformation. Transformed 10T1/2 cells were obtained by colony isolation after exposure of parent 10T1/2 cells to methylcholanthrene (MCA-1 cell line) or X-ray irradiation (XR-III cell line). Compared to parent 10T1/2 and MCA-1 cells, XR-III cells were much smaller in size and exhibited the highest growth rate, greatest cell saturation density, increased plating efficiency and greater expression of proliferating cell nuclear antigen. MCA-1 cells showed intermediate characteristics between parent and XR-III cells. Among the three cell lines, only XR-III cells showed anchorage-independent growth in soft agar. When [35S]methionine-labeled whole cell lysate proteins were separated by two-dimensional polyacrylamide gel electrophoresis, computer comparison algorithms revealed a 97% similarity in protein profiles among almost 800 proteins detected from each cell line. However, comparison of proteins patterns of the transformed cell lines to that of parent 10T1/2 cells showed that 30 and 20 proteins were induced or repressed in XR-III cells and MCA-1 cells, respectively. Similarly, 81 and 24 proteins showed significant quantitative changes (threefold or greater) in XR-III and MCA-1 cells, respectively, as compared with parent 10T1/2 cell proteins. The anchorage-independent growth and increased proliferation properties of XR-III cells suggest a later stage of transformation compared to MCA-1 cells.(ABSTRACT TRUNCATED AT 250 WORDS)
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。