文献库 文献相关信息

题目:
Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia.
作者:
Kimoto(Sohei),Glausier(Jill R),Fish(Kenneth N),Volk(David W),Bazmi(H Holly),Arion(Dominique),Datta(Dibyadeep),Lewis(David A)
状态:
发布时间2016-02-16 , 更新时间 2016-10-19
期刊:
Schizophr Bull
摘要:
N-methyl-d-aspartate receptor (NMDAR) hypofunction in the dorsolateral prefrontal cortex (DLPFC) has been implicated in the pathology of schizophrenia. NMDAR activity is negatively regulated by some G protein-coupled receptors (GPCRs). Signaling through these GPCRs is reduced by Regulator of G protein Signaling 4 (RGS4). Thus, lower levels of RGS4 would enhance GPCR-mediated reductions in NMDAR activity and could contribute to NMDAR hypofunction in schizophrenia. In this study, we quantified RGS4 mRNA and protein levels at several levels of resolution in the DLPFC from subjects with schizophrenia and matched healthy comparison subjects. To investigate molecular mechanisms that could contribute to altered RGS4 levels, we quantified levels of small noncoding RNAs, known as microRNAs (miRs), which regulate RGS4 mRNA integrity after transcription. RGS4 mRNA and protein levels were significantly lower in schizophrenia subjects and were positively correlated across all subjects. The RGS4 mRNA deficit was present in pyramidal neurons of DLPFC layers 3 and 5 of the schizophrenia subjects. In contrast, levels of miR16 were significantly higher in the DLPFC of schizophrenia subjects, and higher miR16 levels predicted lower RGS4 mRNA levels. These findings provide convergent evidence of lower RGS4 mRNA and protein levels in schizophrenia that may result from increased expression of miR16. Given the role of RGS4 in regulating GPCRs, and consequently the strength of NMDAR signaling, these findings could contribute to the molecular substrate for NMDAR hypofunction in DLPFC pyramidal cells in schizophrenia.
语言:
eng
DOI:

联系方式

山东省济南市 高新区 崇华路359号 三庆世纪财富中心C1115室

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。