文献库 文献相关信息

题目:
In silico analysis of SIGMAR1 variant (rs4879809) segregating in a consanguineous Pakistani family showing amyotrophic lateral sclerosis without frontotemporal lobar dementia.
作者:
Ullah(Muhammad Ikram),Ahmad(Arsalan),Raza(Syed Irfan),Amar(Ali),Ali(Amjad),Bhatti(Attya),John(Peter),Mohyuddin(Aisha),Ahmad(Wasim),Hassan(Muhammad Jawad)
状态:
发布时间2015-09-19 , 更新时间 2015-09-19
期刊:
Neurogenetics
摘要:
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting upper motor neurons in the brain and lower motor neurons in the brain stem and spinal cord, resulting in fatal paralysis. It has been found to be associated with frontotemporal lobar degeneration (FTLD). In the present study, we have described homozygosity mapping and gene sequencing in a consanguineous autosomal recessive Pakistani family showing non-juvenile ALS without signs of FTLD. Gene mapping was carried out in all recruited family members using microsatellite markers, and linkage was established with sigma non-opioid intracellular receptor 1 (SIGMAR1) gene at chromosome 9p13.2. Gene sequencing of SIGMAR1 revealed a novel 3'-UTR nucleotide variation c.672*31A>G (rs4879809) segregating with disease in this family. The C9ORF72 repeat region in intron 1, previously implicated in a related phenotype, was excluded through linkage, and further confirmation of exclusion was obtained by amplifying intron 1 of C9ORF72 with multiple primers in affected individuals and controls. In silico analysis was carried out to explore the possible role of 3'-UTR variant of SIGMAR1 in ALS. The Regulatory RNA motif and Element Finder program revealed disturbance in miRNA (hsa-miR-1205) binding site due to this variation. ESEFinder analysis showed new SRSF1 and SRSF1-IgM-BRCA1 binding sites with significant scores due to this variation. Our results indicate that the 3'-UTR SIGMAR1 variant c.672*31A>G may have a role in the pathogenesis of ALS in this family.
语言:
eng
DOI:

联系方式

山东省济南市 高新区 崇华路359号 三庆世纪财富中心C1115室

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。