文献库 文献相关信息

题目:
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
作者:
Macosko(Evan Z),Basu(Anindita),Satija(Rahul),Nemesh(James),Shekhar(Karthik),Goldman(Melissa),Tirosh(Itay),Bialas(Allison R),Kamitaki(Nolan),Martersteck(Emily M),Trombetta(John J),Weitz(David A),Sanes(Joshua R),Shalek(Alex K),Regev(Aviv),McCarroll(Steven A)
状态:
发布时间2015-05-24 , 更新时间 2016-10-19
期刊:
Cell
摘要:
Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together. Drop-seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts' cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. VIDEO ABSTRACT.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。