Analysis of gene profiles in glioma cells identifies potential genes, miRNAs, and target sites of migratory cells.
作者:
Xue(Fei),Shen(Rui),Chen(Xianzhen)
状态:
发布时间2015-09-23
, 更新时间 2015-09-23
期刊:
Tumori
摘要:
To explore the potential molecular mechanisms involved in migratory glioma cells.,The gene expression profiles of GSE28167, employing human malignant glioma U251MG cells cultured on strictly aligned versus randomly oriented electrospun nanofibers of polycaprolactone, were downloaded from the Gene Expression Omnibus database. Gene differential expression analysis was carried out by the package of Gene Expression Omnibus query and limma in R language. The Gene Set Analysis Toolkit V2 was used for pathway analysis. Gene set enrichment analysis was used to screen for target sites of transcription factors, miRNA and small drug molecules.,Totally 586 differentially expressed genes were identified and the differentially expressed genes were mainly enriched in the pathway of muscle cell TarBase, MAPK cascade, adipogenesis and epithelium TarBase. Thirty-two significant target sites of transcription factors, such as hsa_RTAAACA_V$FREAC2_01, were screened. The top 20 potential miRNAs including MIR-124A, MIR-34A and MIR-34C were screened for a constructing gene-miRNA interaction network. Small molecules that can inhibit the motility of glioma cells such as diclofenamide and valinomycin were mined. By integrating the regulatory relationships among transcription factors, miRNAs and differentially expressed genes, we found that 7 differentially expressed genes, including SOX4, ANKRD28 and CCND1, might play crucial roles in the migration of glioma cells.,The screened migration-associated genes, significant pathways, and small molecules give us new insight for the mechanism of migratory glioma cells. Interest in such genes as potential target genes in the treatment of glioblastoma justifies functional validation studies.