文献库 文献相关信息

题目:
Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells.
作者:
Toyoda(Taro),Mae(Shin-Ichi),Tanaka(Hiromi),Kondo(Yasushi),Funato(Michinori),Hosokawa(Yoshiya),Sudo(Tomomi),Kawaguchi(Yoshiya),Osafune(Kenji)
状态:
发布时间2015-03-17 , 更新时间 2016-05-18
期刊:
Stem Cell Res
摘要:
Embryonic pancreatic bud cells, the earliest pancreas-committed cells, generated from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been shown to differentiate into mature pancreatic β-cells in vivo, indicating the feasibility of hESC/iPSC-based cell therapy for diabetes. However, the key factors required for the differentiation of these cells into pancreatic bud cells are incompletely understood. The purpose of this study was to establish culture conditions that efficiently induce PDX1(+)NKX6.1(+) pancreatic bud cells from hESCs/iPSCs. We differentiated a hESC line, KhES-3, into pancreatic lineages with a stepwise protocol recapitulating developmental process. The induction rate of PDX1(+)NKX6.1(+) cells was correlated with cell density in adherent cultures, and markedly improved with cell aggregation cultures. The positive effects of cell aggregation cultures on the differentiation of pancreatic bud cells were reproduced in multiple hESC/iPSC lines. The human PDX1(+)NKX6.1(+) cells developed into pancreatic epithelia after implantation into immunocompromised mice. Moreover, human C-peptide secretion into mouse bloodstream was stimulated by glucose challenges after in vivo maturation. Taken together, these results suggest that cultures with high cell density are crucial for the differentiation of pancreas-committed progenitor cells from hESCs/iPSCs. Our findings may be applicable for the development of hESC/iPSC-based cell therapy for diabetes.
语言:
eng
DOI:
10.1016/j.scr.2015.01.007

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。