文献库 文献相关信息

题目:
Microfluidic cellular enrichment and separation through differences in viscoelastic deformation.
作者:
Wang(Gonghao),Crawford(Kaci),Turbyfield(Cory),Lam(Wilbur),Alexeev(Alexander),Sulchek(Todd)
状态:
发布时间2014-12-16 , 更新时间 2014-12-16
期刊:
Lab Chip
摘要:
We report a microfluidic approach to separate and enrich a mixture of two cell types based on differences in cell viscoelastic behavior during repeated compressions and relaxation events. As proof of concept, we demonstrate that variations in viscoelasticity affect the flow trajectory of one type of leukemia cell line (K562) in relation to another leukemia cell line (HL60) as well as healthy leukocytes. These differences in cell trajectory can be utilized to enrich and sort K562 cells from HL60 cells and leukocytes. The microfluidic device utilizes periodic, diagonal ridges to compress and translate the cells laterally perpendicular to channel axis. The ridge spacing is tuned to allow relaxation of the K562 cells but not the HL60 cells or leukocytes. Therefore, the periodic compression laterally translates weakly viscous cells, while highly viscous cells respond to hydrodynamic circulation forces generated by the slanted ridges. As a result, cell sorting has strong dependency on cell viscosity. We use atomic force microscopy and high-speed optical microscopy to measure cell stiffness, cell relaxation rate constant, and cell size for all cell types. With properly designed microfluidic channels, we can optimize the enrichment of K562 cells from HL60 and leukocytes.
语言:
eng
DOI:
10.1039/c4lc01150c

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。