文献库 文献相关信息

题目:
microRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma.
作者:
Kikkawa(Naoko),Kinoshita(Takashi),Nohata(Nijiro),Hanazawa(Toyoyuki),Yamamoto(Noriko),Fukumoto(Ichiro),Chiyomaru(Takeshi),Enokida(Hideki),Nakagawa(Masayuki),Okamoto(Yoshitaka),Seki(Naohiko)
状态:
发布时间2014-04-15 , 更新时间 2014-04-15
期刊:
Int J Oncol
摘要:
Our recent study of the microRNA (miRNA) expression signature of hypopharyngeal squamous cell carcinoma (HSCC) revealed that microRNA-504 (miR-504) is significantly downregulated in HSCC tissues, suggesting that this miRNA is a candidate tumor suppressor. However, several previous reports indicated that miR-504 has an oncogenic function through targeting TP53. The aim of this study was to investigate the functional significance of miR-504 in cancer cells and to identify novel targets regulated by this miRNA in HSCC cells. First, we confirmed the downregulation of miR-504 in HSCC clinical specimens (P<0.0001) by qPCR. Using two sources of miR-504 to restore function, we observed significant inhibition of cancer cell proliferation in head and neck SCC (HNSCC) cell lines (FaDu, SAS and HSC3) and HCT116 colon carcinoma cells (p53+/+ and p53-/-). In HNSCC cells, induction of cell cycle arrest was observed by miR-504 transfection. To identify the molecular targets of miR-504, we performed gene expression analysis of miR-504 transfectants and in silico database analyses. Our data showed that cell cycle-related genes (RB1, CDK6, CDC23 and CCND1) were candidate target genes of miR-504. In HSCC clinical specimens, the expression of cyclin-dependent kinase 6 (CDK6) was significantly higher in cancer tissues compared to non-cancer tissues (P=0.0004). A significant inverse correlation between CDK6 and miR-504 expression was found (r=-0.43, P=0.0039). Expression of miR-504 inhibited CDK6 expression in HNSCC cells. Loss of tumor-suppressive miR-504 enhanced HSCC cell proliferation through targeting CDK6. The identification of novel tumor-suppressive miR-504-mediated molecular pathways and targets provide new insights into HSCC oncogenesis.
语言:
eng
DOI:
10.3892/ijo.2014.2349

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。