Macrophages play a pivotal role in host defense against multiple foreign materials such as bacteria, parasites and artificial devices. Some macrophage lineage cells, namely osteoclasts and foreign body giant cells (FBGCs), form multi-nuclear giant cells by the cell-cell fusion of mono-nuclear cells. Osteoclasts are bone-resorbing cells, and are formed in the presence of RANKL on the surface of bones, while FBGCs are formed in the presence of IL-4 or IL-13 on foreign materials such as artificial joints, catheters and parasites. Recently, fusiogenic mechanisms and the molecules required for the cell-cell fusion of these macrophage lineage cells were, at least in part, clarified. Dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP), both of which comprise seven transmembrane domains, are required for both osteoclast and FBGC cell-cell fusion. STAT6 was demonstrated to be required for the cell-cell fusion of FBGCs but not osteoclasts. In this review, advances in macrophage cell-cell fusion are discussed.