文献库 文献相关信息

题目:
Comparison of isolation and expansion techniques for equine osteogenic progenitor cells from periosteal tissue.
作者:
McDuffee(Laurie A)
状态:
发布时间2012-10-01 , 更新时间 2016-10-19
期刊:
Can J Vet Res
摘要:
Stem cell therapy and cell-based therapies using other progenitor cells are becoming the treatment of choice for many equine orthopedic lesions. Important criteria for obtaining autogenous equine progenitor cells in vitro for use in clinical cell-based therapy include the ability to isolate and expand cells repeatedly to high numbers (millions) required for therapy, in a clinically relevant time frame. Cells must also maintain their ability to differentiate into the tissue type of choice. The objective of this study was to compare isolation and expansion techniques for preparation of periosteal-derived osteogenic progenitor cells for use in commercial autogenous cell-based therapy. Cells were allowed to migrate spontaneously from periosteal tissue or were enzymatically released. Isolated cells were expanded using enzymatic detachment of cells and subsequent monolayer or dynamic culture techniques. Viable osteogenic progenitor cells from each group were counted at 2 weeks, and osteogenic potential determined. Cells isolated or expanded using the explant or bioreactor technique yielded cells at a much lower number per gram of tissue compared with that of enzyme digestion and monolayer expansion, but all cells were able to differentiate into the ostoblast phenotype. Osteogenic progenitor cells isolated by enzymatic release and expanded using monolayer culture reached the highest number of viable cells per gram of donor periosteal tissue while maintaining the ability to differentiate into bone forming cells in vitro. This technique would be an easy, consistent method of preparation of equine osteogenic cells for clinical cell based therapy for orthopedic conditions.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。