文献库 文献相关信息

题目:
Opioid-induced down-regulation of RGS4: role of ubiquitination and implications for receptor cross-talk.
作者:
Wang(Qin),Traynor(John R)
状态:
发布时间2011-03-10 , 更新时间 2016-12-02
期刊:
J Biol Chem
摘要:
Regulator of G protein signaling protein 4 (RGS4) acts as a GTPase accelerating protein to modulate μ- and δ- opioid receptor (MOR and DOR, respectively) signaling. In turn, exposure to MOR agonists leads to changes in RGS4 at the mRNA and/or protein level. Here we have used human neuroblastoma SH-SY5Y cells that endogenously express MOR, DOR, and RGS4 to study opioid-mediated down-regulation of RGS4. Overnight treatment of SH-SY5Y cells with the MOR agonist DAMGO or the DOR agonist DPDPE decreased RGS4 protein by ∼60% accompanied by a profound loss of opioid receptors but with no change in RGS4 mRNA. The decrease in RGS4 protein was prevented by the pretreatment with pertussis toxin or the opioid antagonist naloxone. The agonist-induced down-regulation of RGS4 proteins was completely blocked by treatment with the proteasome inhibitors MG132 or lactacystin or high concentrations of leupeptin, indicating involvement of ubiquitin-proteasome and lysosomal degradation. Polyubiquitinated RGS4 protein was observed in the presence of MG132 or the specific proteasome inhibitor lactacystin and promoted by opioid agonist. The loss of opioid receptors was not prevented by MG132, demonstrating a different degradation pathway. RGS4 is a GTPase accelerating protein for both Gα(i/o) and Gα(q) proteins. After overnight treatment with DAMGO to reduce RGS4 protein, signaling at the Gα(i/o)-coupled DOR and the Gα(q)-coupled M(3) muscarinic receptor (M(3)R) was increased but not signaling of the α(2) adrenergic receptor or bradykinin BK(2) receptor, suggesting the development of cross-talk between the DOR and M(3)R involving RGS4.
语言:
eng
DOI:

联系方式

山东省济南市 高新区 崇华路359号 三庆世纪财富中心C1115室

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。