文献库 文献相关信息

题目:
[Epithelial-mesenchymal transition in cancer progression].
作者:
Gos(Monika),Miłoszewska(Joanna),Przybyszewska(Małgorzata)
状态:
发布时间2009-10-14 , 更新时间 2009-10-14
期刊:
Postepy Biochem
摘要:
According to recently published data, the epithelial-mesenchymal transition--a process important for embryonic development, may be involved in many pathological processes such as wound healing, tissue fibrosis or cancer progression. The EMT process in cell is driven by growth factors (EGF, PDGF, HGF) or other signaling proteins such as TGF-beta, sonic hedgehog (Shh), Wnt/beta-catenin and extracellular matrix (ECM) components that may stimulate cellular growth and migration. During cancer progression, the EMT process is necessary to the conversion of benign tumor to aggressive and highly invasive cancer. This is due to complex changes in cancer cells and their microenvironment that lead to dissolution of intracellular junctions and their detachment from basolateral membrane, and changes in the interactions between cancer cells and ECM. The loss of adhesion is accompanied by molecular and morphologic changes in cancer cells that are essential for the phenotypic change from epithelial to mesenchymal one, and the acquirement of higher migration and invasion potential. During the colonization of distant sites, a reverse process mesenchymal-epithelial transition (MET) takes place and metastatic cancer cells again acquire the epithelial phenotype. The EMT in cancer progression is not only specific for cancer cells. It has been suggested that also cells within tumor microenvironment e.g. cancer associated fibroblasts (CAF) are generated in part from normal epithelial cells in EMT process. The understanding of the role of EMT and MET processes in cancer progression and their relationship with cancer stem cells, cancer associated fibroblasts and other stroma cells might lead to the discovery of new, targeted cancer therapies.
语言:
pol
DOI:

联系方式

山东省济南市 高新区 崇华路359号 三庆世纪财富中心C1115室

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。