文献库 文献相关信息

题目:
Mechanical properties of HL60 cells: role of stimulation and differentiation in retention in capillary-sized pores.
作者:
Erzurum(S C),Kus(M L),Bohse(C),Elson(E L),Worthen(G S)
状态:
发布时间1991-11-13 , 更新时间 2011-11-17
期刊:
Am J Respir Cell Mol Biol
摘要:
Neutrophil sequestration in pulmonary capillaries occurs prior to the development of lung injury, but the mechanisms by which neutrophils are retained are unclear. We hypothesized that decreases in cell deformability, in the absence of an increase in cell surface adhesive properties, would be sufficient to cause cell retention in a filtration apparatus modeling the pulmonary microvasculature. The myelomonocytic cell line (HL60 cell line) was used to test the hypothesis since these cells were unable to increase adherence in response to n-formylmethionylleucylphenylalanine (FMLP) in either the undifferentiated state or when differentiated towards granulocytes. With differentiation, HL60 cell volume decreased, and f-actin organization changed from a thick cortical rim with focal areas of f-actin in undifferentiated cells to a thin rim in differentiated cells. Differentiated cells responded to FMLP by reorganizing f-actin and increasing stiffness. Undifferentiated cells did not exhibit changes in f-actin with stimulation, were stiffer than differentiated cells, and did not increase stiffness in response to FMLP. Cytochalasin D (CD), which disrupted the cytoarchitecture as assessed by confocal microscopy but did not affect cell volume or adherence, decreased the stiffness of undifferentiated and FMLP-stimulated differentiated cells, thus suggesting the importance of microfilament organization in the stiffness of these cells. Filtration of cells through 8-microns pores showed that undifferentiated cells were markedly retained and did not exhibit any further retention with FMLP. Differentiated cells exposed to FMLP exhibited a concentration-dependent increase in retention in 8-microns pores that was abolished by CD. In addition, CD reduced retention of undifferentiated cells, indicating that microfilament organization is an important factor in determining a cell's rheologic properties. In conclusion, FMLP-stimulated microfilament reorganization, which increased cell stiffness, was sufficient in the absence of adherence factors to cause cell retention in a filtration system. This lends support to the hypothesis that decreases in cell deformability contribute to neutrophil retention in the pulmonary microvasculature.
语言:
eng
DOI:
10.1165/ajrcmb/5.3.230

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。