文献库 文献相关信息

题目:
Modulation of subfamily B/R4 RGS protein function by 14-3-3 proteins.
作者:
Abramow-Newerly(Maria),Ming(Hong),Chidiac(Peter)
状态:
发布时间2006-10-31 , 更新时间 2013-11-21
期刊:
Cell Signal
摘要:
Regulator of G protein signalling (RGS) proteins are primarily known for their ability to act as GTPase activating proteins (GAPs) and thus attenuate G protein function within G protein-coupled receptor (GPCR) signalling pathways. However, RGS proteins have been found to interact with additional binding partners, and this has introduced more complexity to our understanding of their potential role in vivo. Here, we identify a novel interaction between RGS proteins (RGS4, RGS5, RGS16) and the multifunctional protein 14-3-3. Two isoforms, 14-3-3beta and 14-3-3epsilon, directly interact with all three purified RGS proteins and data from in vitro steady state GTP hydrolysis assays show that 14-3-3 inhibits the GTPase activity of RGS4 and RGS16, but has limited effects on RGS5 under comparable conditions. Moreover in a competitive pull-down experiment, 14-3-3epsilon competes with Galphao for RGS4, but not for RGS5. This mechanism is further reinforced in living cells, where 14-3-3epsilon sequesters RGS4 in the cytoplasm and impedes its recruitment to the plasma membrane by Galpha protein. Thus, 14-3-3 might act as a molecular chelator, preventing RGS proteins from interacting with Galpha, and ultimately prolonging the signal transduction pathway. In conclusion, our findings suggest that 14-3-3 proteins may indirectly promote GPCR signalling via their inhibitory effects on RGS GAP function.
语言:
eng
DOI:
10.1016/j.cellsig.2006.05.011

联系方式

山东省济南市 高新区 崇华路359号 三庆世纪财富中心C1115室

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。