文献库 文献相关信息

题目:
Long-lasting in vitro hematopoiesis derived from primate embryonic stem cells.
作者:
Hiroyama(Takashi),Miharada(Kenichi),Aoki(Naoko),Fujioka(Tsuyoshi),Sudo(Kazuhiro),Danjo(Inaho),Nagasawa(Toshiro),Nakamura(Yukio)
状态:
发布时间2006-05-26 , 更新时间 2007-11-15
期刊:
Exp Hematol
摘要:
Induction of hematopoietic cells from human embryonic stem (ES) cells has been reported recently. However, before cells derived from human ES cells can be used in the clinic, preclinical studies using these cells in experimental primates will be necessary. Therefore, we attempted to establish a method to induce hematopoietic cells robustly and abundantly from primate ES cells.,A primate ES cell line, CMK-6, derived from the cynomolgus monkey was used in this study. We adapted a method to induce hematopoiesis from CMK-6 cells on feeder cells, and tested the effectiveness of three kinds of feeder cell lines (OP9, C2C12, and C3H10T1/2). In addition, we tested the effect of vascular endothelial growth factor (VEGF) and insulin-like growth factor-II (IGF-II) on hematopoiesis induction from CMK-6 cells.,VEGF and IGF-II showed an extremely strong synergistic effect to induce hematopoiesis from CMK-6 cells. C3H10T1/2 cells proved to be very useful for the induction of hematopoiesis from CMK-6 cells, and the production of blood cells on C3H10T1/2 cells has been maintained as long as 5 months. During this long period, ES cell derivatives continuously produced mature blood cells, including terminally differentiated cells.,We have developed an original method to produce enriched blood cells abundantly from primate ES cells for an extremely long period. This method may represent a good in vitro model for studying primate hematopoiesis and related diseases. Furthermore, our method may be useful for preclinical studies of transfusion therapy using blood cells derived from ES cells in experimental primate systems.
语言:
eng
DOI:
10.1016/j.exphem.2006.03.004

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。