文献库 文献相关信息

题目:
Isolation and characterization of highly radioresistant malignant hamster fibroblasts that survive acute gamma irradiation with 20 Gy.
作者:
Tyrsina(Ekaterina G),Slanina(Svetlana V),Kakpakova(Evgeniya S),Kalendo(Galina S),Kan(Natalia G),Tyrsin(Oleg Y),Ryskov(Alexei P)
状态:
发布时间2005-11-21 , 更新时间 2005-11-21
期刊:
Radiat Res
摘要:
To study the acquired radioresistance of tumor cells, a model system of two cell lines, Djungarian hamster fibroblasts (DH-TK-) and their radioresistant progeny, was established. The progeny of irradiated cells were isolated by treating the parental cell monolayer with a single dose of 20 Gy (PIC-20). The genetic and morphological features, clonogenic ability, radiosensitivity, cell growth kinetics, ability to grow in methylcellulose, and tumorigenicity of these cell lines were compared. The plating efficiency of PIC-20 cells exceeded that of DH-TK- cells. The progeny of irradiated cells were more radioresistant than parental cells. The average D0 for PIC-20 cells was 7.4 +/- 0.2 Gy, which is three times higher than that for parental cells (2.5 +/- 0.1 Gy). Progeny cell survival in methylcellulose after irradiation with a dose of 10 Gy was 15 times higher than that of DH-TK- cells. In contrast to parental cells, the progeny of irradiated cells showed fast and effective repopulation after irradiation with doses of 12.5 and 15 Gy. The tumor formation ability of irradiated progeny cells was higher than that of parental cells; after 15 Gy irradiation, PIC-20 cells produced tumors as large as unirradiated progeny of irradiated cells, whereas the tumor development of DH-TK- cells diminished by 70%. High radioresistance of progeny of irradiated cells was reproduced during the long period of cultivation (more than 80 passages). The stability of the radioresistant phenotype of PIC-20 cells allows us to investigate the possible mechanisms of acquired tumor radioresistance.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。