文献库 文献相关信息

题目:
A three-dimensional flow control concept for single-cell experiments on a microchip. 1. Cell selection, cell retention, cell culture, cell balancing, and cell scanning.
作者:
Peng(Xing Yue),Li(Paul C H)
状态:
发布时间2004-09-14 , 更新时间 2015-11-19
期刊:
Anal Chem
摘要:
An ideal microchip for single-cell experiments should be able to allow us to culture cells, to select any desired single cell from a group, to retain the cell for convenient cellular signal detection, and to deliver any buffer or reagent directly to the cell at any time during continual detection and observation. Most importantly, any negative impact on the live cell should be minimized. To accomplish all these functions, we developed a three-dimensional liquid flow control concept and employed special liquid flow fields to manipulate and retain a single yeast cell freely in the chip. A zero-speed point was controlled to retain the cell for three-dimensional cell balancing and cell scanning. A dispersive flow delivered reagents at a high speed to very near the cell and provided them to the cell at a low speed. No force stronger than its gravitational force was exerted on the cell, which could be balanced on different positions on an arc-sloping wall, thus minimizing any negative impact on the cell due to strong liquid flows. Specifically, we demonstrate on-chip single-cell culture, cell wall removal, and reagent delivery. Subsequently, single-cell fluorescence detection was performed, and noise filtering and background correction were applied for data processing.
语言:
eng
DOI:
10.1021/ac049384s

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。