文献库 文献相关信息

题目:
Regulation of RGS proteins by chronic morphine in rat locus coeruleus.
作者:
Gold(Stephen J),Han(Ming-Hu),Herman(Amy E),Ni(Yan G),Pudiak(Cindy M),Aghajanian(George K),Liu(Rong-Jian),Potts(Bryan W),Mumby(Susanne M),Nestler(Eric J)
状态:
发布时间2003-03-25 , 更新时间 2013-11-21
期刊:
Eur J Neurosci
摘要:
The present study explored a possible role for RGS (regulators of G protein signalling) proteins in the long term actions of morphine in the locus coeruleus (LC), a brainstem region implicated in opiate physical dependence and withdrawal. Morphine influences LC neurons through activation of micro -opioid receptors, which, being Gi/o-linked, would be expected to be modulated by RGS proteins. We focused on several RGS subtypes that are known to be expressed in this brain region. Levels of mRNAs encoding RGS2, -3, -4, -5, -7, -8 and -11 are unchanged following chronic morphine, but RGS2 and -4 mRNA levels are increased 2-3-fold 6 h following precipitation of opiate withdrawal. The increases in RGS2 and -4 mRNA peak after 6 h of withdrawal and return to control levels by 24 h. Immunoblot analysis of RGS4 revealed a striking divergence between mRNA and protein responses in LC: protein levels are elevated twofold following chronic morphine and decrease to control values by 6 h of withdrawal. In contrast, levels of RGS7 and -11 proteins, the only other subtypes for which antibodies are available, were not altered by these treatments. Intracellular application of wild-type RGS4, but not a GTPase accelerating-deficient mutant of RGS4, into LC neurons diminished electrophysiological responses to morphine. The observed subtype- and time-specific regulation of RGS4 protein and mRNA, and the diminished morphine-induced currents in the presence of elevated RGS4 protein levels, indicate that morphine induction of RGS4 could contribute to aspects of opiate tolerance and dependence displayed by LC neurons.
语言:
eng
DOI:

联系方式

山东省济南市 高新区 崇华路359号 三庆世纪财富中心C1115室

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。