文献库 文献相关信息

题目:
Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas.
作者:
Zhai(Yali),Wu(Rong),Schwartz(Donald R),Darrah(Danielle),Reed(Heather),Kolligs(Frank T),Nieman(Marvin T),Fearon(Eric R),Cho(Kathleen R)
状态:
发布时间2002-04-10 , 更新时间 2016-10-19
期刊:
Am J Pathol
摘要:
In various cancers, inactivating mutations in the adenomatous polyposis coli or Axin tumor suppressor proteins or activating mutations in beta-catenin's amino-terminal domain elevate beta-catenin levels, resulting in marked effects on T-cell factor (TCF)-regulated transcription. Several candidate beta-catenin/TCF-regulated genes in cancer have been proposed. Expression of a few of these genes has been studied in primary human cancers, but most studies have focused on colon cancers and not on other cancer types that harbor mutational defects in adenomatous polyposis coli, AXIN, or beta-catenin. Mutations leading to beta-catenin deregulation are found in nearly half of ovarian endometrioid adenocarcinomas (OEAs). We report here on the expression of 6 candidate beta-catenin/TCF-regulated genes in a panel of 44 primary OEAs, more than a third of which carry demonstrable defects in beta-catenin regulation. Using quantitative assays of gene expression, we found significantly elevated expression of the MMP-7, CCND1 (Cyclin D1), CX43 (Connexin 43), PPAR-delta, and ITF2 genes in OEAs with deregulated beta-catenin. This correlation was not observed for c-myc, another putative beta-catenin/TCF-regulated gene. Immunohistochemical studies confirmed that overexpression of cyclin D1 and MMP-7 was highly associated with nuclear accumulation of beta-catenin and mutational defects of the Wnt/beta-catenin/TCF-signaling pathway. Our findings indicate cyclin D1, MMP-7, connexin 43, PPAR-delta, and ITF-2, likely play important roles in the pathogenesis of those OEAs that manifest defects in beta-catenin regulation.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。