实验库 数据相关信息

题目:
Definition and characterization of the systemic T cell dysregulation in untreated indolent B cell lymphoma and very early CLL
ID:
状态:
发布时间March 1, 2011 , 更新时间 March 27, 2012
物种:
Homo sapiens
摘要:
Epidemiological data show that the immune system may control or promote emergence and growth of a neoplastic lymphomatous clone. Conversely, systemic lymphomas, especially myeloma and CLL, are associated with clinical immunodeficiency. This prospective controlled study demonstrates substantially reduced circulating T helper cells, predominantly naive CD4+ cells, in patients with non-leukemic follicular and extranodal marginal zone lymphomas, but not in monoclonal gammopathy and early CLL. These numerical changes were correlated with a preactivated phenotype, hyperreactivity in vitro, presenescence, and a Th2 shift of peripheral T helper cells. No prominent alterations were found in the regulatory T cell compartment. Gene expression profiling of in vitro-stimulated CD4+ cells revealed an independent second alteration of T helper cell physiology which was most pronounced in early CLL but also detectable in FL/eMZL. This pattern consisted of downregulation of proximal and intermediate T-cell receptor signaling cascades and globally reduced cytokine secretion. Both types of T cell dysfunction may contribute to significant immunodeficiency in non-leukemic indolent B-cell lymphomas as demonstrated by refractoriness to hepatitis B vaccination. The precise definition of systemic T cell dysfunction serves as the basis to study its prognostic impact, its relationship to the established influence of the lymphoma microenvironment, and its therapeutic manipulation 8 samples from FL/eMZL patients, 7 samples from CLL patients, 5 samples of MGUS patients, 5 MALT, 16 healthy controls
实验种类:
transcription profiling by array
样本量:
41
实验设计:
无设计数据
数据号:
E-GEOD-23293, GSE23293
数据状态:

无法自动分析,您可以尝试手动分析数据。

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。