文献库 文献相关信息

题目:
Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays.
作者:
Huang(Chunyun),Sheng(Youyu),Jia(Jack),Chen(Lianjun)
状态:
发布时间2014-12-02 , 更新时间 2015-11-19
期刊:
J Cancer Res Ther
摘要:
Melanoma is a leading cause of cancer death. Thus, accurate prognostic biomarkers that will assist rational treatment planning need to be identified.,Microarray analysis of melanoma and normal tissue samples was performed to identify differentially expressed modules (DEMs) from the signaling network and ultimately detect molecular markers to support histological examination. Network motifs were extracted from the human signaling network. Then, significant expression-correlation differential modules were identified by comparing the network module expression-correlation differential scores under normal and disease conditions using the gene expression datasets. Finally, we obtained DEMs by the Wilcoxon rank test and considered the average gene expression level in these modules as the classification features for diagnosing melanoma.,In total, 99 functional DEMs were identified from the signaling network and gene expression profiles. The area under the curve scores for cancer module genes, melanoma module genes, and whole network modules are 92.4%, 90.44%, and 88.45%, respectively. The classification efficiency rates for nonmodule features are 71.04% and 79.38%, which correspond to the features of cancer genes and melanoma cancer genes, respectively. Finally, we acquired six significant molecular biomarkers, namely, module 10 (CALM3, Ca 2+ , PKC, PDGFRA, phospholipase-g, PIB5PA, and phosphatidylinositol-3-kinase), module 14 (SRC, Src homology 2 domain-containing [SHC], SAM68, GIT1, transcription factor-4, CBLB, GRB2, VAV2, LCK, YES, PTCH2, downstream of tyrosine kinase [DOK], and KIT), module 16 (ELK3, p85beta, SHC, ZFYVE9, TGFBR1, TGFBR2, CITED1, SH3KBP1, HCK, DOK, and KIT), module 45 (RB, CCND3, CCNA2, CDK4, and CDK6), module 75 (PCNA, CDK4, and CCND1), and module 114 (PSD93, NMDAR, and FYN).,We explored the gene expression profile and signaling network in a global view and identified DEMs that can be used as diagnostic or prognostic markers for melanoma.
语言:
eng
DOI:
10.4103/0973-1482.145816

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。